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I n  this paper calculations are made of the two-dimensional flow field of an incom- 
pressible viscous fluid in a long parallel-sided channel whose walls pulsate in a pre- 
scribed way. The study covers all values of the unsteadiness parameter a and the 
steady-streaming Reynolds number. The wall motion is, in general, assumed to  be 
of small amplitude and sinusoidal. Particular attention is given to the steady com- 
ponent of the flow a t  second order in the amplitude parameter e.  The results for the 
corresponding problem in axisymmetric geometry are given in an appendix. 

Next the following problem is considered: the calculation of the wall motion which 
will result, in response to  prescribed unsteady pressures imposed a t  the ends of the 
channel and outside its walls, if the walls are assumed to respond elastically to varia- 
tions in transmural pressure. It is found that the system has a natural frequency of 
oscillation, and that resonance will occur if this frequency is close to a multiple of the 
frequency of the external pressure fluctuations. Finally the preceding work is applied 
in a discussion of blood flow in the coronary arteries of large mammals. 

1. Introduction 
A central feature of many physiological flow problems is the distensibility of vessel 

walls and the wall motion which results under pulsatile flow conditions. The usual 
approach to such problems is in terms of wave propagation, with the wall displace- 
ment dependent on both time and axial distance. Here, however, we consider two 
model problems in which the wall position depends only on time: two-dimensional 
flow in a long channel of width 2a(t)  and axisymmetric flow in a long tube of radius 
a(t). An important reason for studying these two problems is that the velocity field 
in each depends linearly on axial distance. This simplifies the equation of motion and 
makes it possible to  find solutions over a wide range of flow parameters ( $ 5  2-5). 

Under physiological conditions the wall motion of a vessel is not usually directly 
determined by external factors. It is more appropriate to consider the motion as being 
driven by external pressures applied to the ends of a length of vessel and outside its 
walls. A model problem of this type is investigated in $ 6, and the results are applied 
in $ 7  to the flow in the coronary arteries. 

Uchida & Aoki (1977)  have considered the same problem (in the axisymmetric case) 
but with a different choice for the function a(t) .  They showed that if a( t )  is a particular 
monotonic function of time then time can be used as a similarity variable, and a solution 
can be obtained to the full nonlinear equations. The results of the present paper are 
complementary to  theirs. 

I 0  F L M  88 
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2. Formulation; solution in the inviscid case 
We shall consider the two-dimensional flow of an incompressible fluid in a long 

channel with rigid walls which move along their normal direction (the y axis) in a 
prescribed way, so that 

The corresponding problem in cylindrical geometry is that of axisymmetric flow in a 
long cylinder with radius T = a( t ) .  These two cases are illustrated in figure 1. From 
here on we consider the two-dimensional case; the corresponding results for the 
axisymmetric case are summarized in the appendix. Taking velocity components 
(u, v), the equations of motion are 

ut +uu, +vu, = - $, +v(u,, +u,,), (2.2) 

vt +uvz +vv, = - q5, +v(w,, +v,,), (2.3) 

where # = P/P,  (2.4) 

u, +wy = 0, (2.5) 

u=O,  v = & a  a t  y = + a .  (2.6) 

y = & a(t)  on the walls. (2.1) 

I n  addition it will prove necessary to make some assumption about the conditions 
a t  the ends of the channel to  specify the flow completely. 

A useful starting point in solving the problem (2.2)-(2.6) is to consider the inviscid 
problem obtained by dropping the viscous terms in (2.2) and (2.3) and the first, no-slip, 
condition in (2.6). Assuming a solution for which w is independent of x leads to the 
general solution 

v = ay/u, (2.8) 

q5 = $,(t) - +Uy2/a - G(t)  x + ~ ( U / U  - 2U2/a2) 22,  (2.9) 

where $,., G and P are unknown functions. G(t )  may be thought of as an externally 
applied pressure gradient and P(y/a) as the prescribed profile of the flow entering 
one end of the channel. 

Afeature of (2.7)-(2.9) is that  v is independent of x, u is linear inx, and 4 is quadratic 
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in X .  We propose that the full viscous solution may have the same structure; accordingly 
we suppose that 

where the unknown functions on the right-hand side are independent of x. If at  the 
same time we scale the y co-ordinate by introducing 7 = y /a ,  so that uo, ul, v, $,, $1 

and $2 are functions of 7 and t ,  we obtain 

(2.11) 

(2.12) 

(u, v,$) = (u, +xu19 0, $0 +x$, + x 2 $ 2 ) ,  (2.10) 

Uot +u, u1+ (v - ciq) uo,/a = - $1 + vu0~,/a2, 

ult +u2, + (v - ciq) ul,/a = - 2$2 +vul,,/a2, 

vt +(v - u y )  V,/U = - $,,/a +vv,,/u2, (2.13) 

u1 +v,/a = 0, (2.14) 

$l?/ = 0, $2, = 0, (2.15), (2.16) 

uo=ul=O, v = + u  a t  7 = + 1 .  (2.17) 

Here (2.12)) (2.14) and (2.16) involve only ul, v and $2. The quantity u, represents a 
superimposed longitudinal flow. It may be calculated from (2.11) once v has been 
determined if $1 is given, along with a suitable condition on the upstream flow profile. 
However we shall concentrate on the problem for ul, v and &, which is independent 
of u,. 

3. Solution for small a 
We define the unsteadiness parameter (Womersley number) a by 

a = a,(w/v)b, (3.1) 

where v is the kinematic viscosity, w is a characteristic frequency of the wall oscillations 
and a, is a typical half-width or radius of the channel or tube. When a is small we may 
solve the problem in powers of a2 when a( t )  is an arbitrary function of time. Writing 
(2.12) in the form 

(3.2) ulvll = g +a2(a2ult +a%: +a(v -u7) ul,)/(wu:), 

where g(t) = 2a2a2$,/(wa:), 

we find that 

u1 = &i/.) (72- 1) +a2[&@(y2- 1 )  (572- 1) 

v = ~ U 7 ( 3 - 7 2 ) - a Z [ ~ a l i 7 ( r 1 2 -  1)2 

$2 = $a-%~aga/a~ +(&i/a - # i 2 / u 2 )  + O ( a W ) .  

+&2(72- 1) (774- 9 8 ~ ~  + i g ) ~ / ( ~ a : )  + 0 ( a 4 4 ,  (3.3) 

+&aA2q(y2 - 1)2 (y2- 19)] / (waf)  +O(a4wa,), (3.4) 

(3.5) 

We see that the pressure is dominated by a viscous term depending on a, and that 
inertial effects only appear at the next order. 

10-2 
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FIGURE 2. The Lagrangian mean streaming velocity in 
two-dimensional geometry [equation (4. lo)]. 

4. Solution for arbitrary a and small sinusoidal wall displacements 
In  this section we assume that a > 0 and that the wall motion takes the form 

a ( t )  = a,(l +ecoswt) where e < 1 .  ( 4 .1 )  

We produce a solution as a power series in e up to second order. If we consider the 
form of the problem for ul, v and #2 and the effect of changing the sign of e ,  we see 
that the solution must take the form 

)I +0(e3), (4 .2)  #2 = €Re ($b"]efwt) +@[$$'J] +Re (@221e2f~t 

and similarly for u1 and v, where the quantities +fiJ are independent of time and 
represent the j th  Fourier component of the ith-order term in the expansion of the 
quantity $2. In  § 5 we shall discuss the convergence properties of this series in 8. 

First-order so2ution. Equations (2.12), (2 .14)  and (2.17) give a t  first order in 6 

ioup = - 2 $ p  + va,2 ug;, 
u[lll +,-lv[ll1 = 0 

01111 = iwa,, ui"1 = o at q = 2 1 .  

1 0 7  

This has the solution 

$bl" = - &9 cosh DID, 

u\"' = - iw(c0sh $ - cash $q)/D, 

vrl* = ia ,w(r  cosh$-sinhPq/$)/D, 

D = cosh ,8 - sinh $/$. where ,8 = aefin, 
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FIGURE 3. Comparison of exact and approximate formulae for the Lagrangian mean streaming 
velocity in two-dimensional geometry. (a)  a = 3, small a result from (3.4). (a) a = 3, large a 
result (5.3). (c )  a = 3, arbitrary a result (4.10). (d) a = 1, results of (3.4) and (4.10) agree almost 
exactly. 

where an asterisk and C.C. denote the complex conjugate, subject to 

(4.8) vr20~ = @01 = 0 at 9 = 1 .  

These equations are solved to obtain &'ol, U\'O] and v[201. Of more direct interest, however, 
is the Lagrangian mean velocity field, since this gives the actual drift of material 
particles. To obtain this we first calculate the Eulerian velocity field, by expressing 
the velocity field already calculated in terms of the steady co-ordinate y rather than 
the time-dependent co-ordinate 7. We then calculate the Lagrangian mean velocity 
uL at second order through the relation 

UL = UZ +( Svdt . VV), 

where uE is the steady second-order component of the Eulerian velocity, v is the 
velocity at  first order and the angle brackets denote a time average. We obtain 

1 

V L  = waof(?), U1L = -@!!'(@, (4.9) 

where 

and 

- 
9 = Y/ao 

The function f (7) is plotted in figure 2 for several values of a. It is especially interesting 
to notice the reversal of the flow at large a, compared with small a, in the interior of 
the channel. At small a the Lagrangian mean velocity is directed towards the wall, 
while at large a it is away from the wall except in a thin boundary layer a t  the well. 
When a 5 1, (4.10) is found to agree very closely with the form of vL deduced from 
(3.4); see figure 3. The leading term is then of order a2. 
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Second-order solution, oscillatory component. This can be calculated in a similar way; 
however we omit it here. 

5. Solution for large a; importance of steady-streaming Reynolds number 
We now examine the possible range of validity of our power-series solution, con- 

sidered as an asymptotic expansion. We assume that the behaviour of the first few 
terms is indicative. When a 5 1 the results of 0 3 may be used to obtain estimates for 
the first few terms of the power series in c. These are easily seen to be well behaved, 
and we conclude that the solution given in 0 4 is a valid expansion for E Q 1 and a 5 1. 

In  order to exhibit the form of this solution when a is large, we give the following 
approximations, under the rather mild assumption that exp ( - a/24) 6 1 : 

These results turn out to be good approximations to the results of $ 4  when a 2 3; 
see figure 3. Apart from a multiplicative constant, the velocity at  first order is seen to 
comprise the inviscid solution v[l11 = ia, wy modified by an exponential term represent- 
ing a Stokes-type oscillatory boundary layer. In  (5.4) we see that the dominant term 
in the Lagrangian mean velocity vL is independent of a and represents the flow in the 
core driven by the steady velocity - $e2wx which is induced at  the edge of the Stokes 
layer (see Batchelor 1967, p. 360). Rayleigh (1884) obtained the same y dependence 
for the steady streaming induced by a standing sound wave between parallel plates. 

If the calculation is extended to fourth order in c, with the assumption that a is 
large, it is found that u\40’ = O(a2) whereas ui2O1 = O(1) as a+m. Therefore we should 
not expect the series to be valid as an asymptotic representation unless c2a2 is small. 
Indeed, returning to (4.6), we see that the viscous term c2vai2uI!$i was included while 
convective terms such as c 4 u ~ ~ l p  were neglected. The ratio of the former to the latter 
in the core is of magnitude R, = e2cz2, the steady-streaming Reynolds number (Stuart 
1963), and we see that the results obtained so far are valid only if R, Q 1. 

We now give an alternative approach valid for R, 2 O(1) and large a. From (2.12) 
and (2.14) we have 

vvt - av,/a - $/a  +(v - u y )  v,,/a = 2a$, +vv,,,/a2. 

In  order to simplify the nonlinear terms, we suppose that 

v(7, t )  = u7 +a3P(y, t ) .  (5.5) 



Flow in a channel with pulsating walls 279 

J R.5-m 

FIGURE 4. The steady streaming velocity in the core in two-dimensional 
geometry for large a, from (5.9) (R, finite) and (5.16) (R,+oo). 

This gives 
F,, +a2(FF,, - Fi) = 2g2/a2 +vF,,,la2, 

$2 = $2  - gala + $/a2, 

F = 0, Fv = -alas a t  9 = k 1 .  

- 
where 

subject to 
(5.7) 

The problem (5.6) and (5.7) was solved by the method of matched asymptotic ex- 
pansions for the following two cases: 

(i) tl. = Ne-1, so that R, = N2 = O(1) as E + O ;  

(ii) a = Ne-1-c, where c > 0, so that R,+m as e+O. 

We omit the details of the solution. In  each case the matching of the core solution 
to the boundary-layer solution gives rise to the following boundary conditions on the 
flow in the core: 

F[201( k 1)  = 0, FPl( +_ 1 )  = bwa,2. (5 .8 )  

(These are, in effect, the same as the boundary conditions satisfied by the low R, 
solution (5.4) outside the boundary layer.) Within the core the function F is found to 
vanish at  first order, so that the Lagrangian and Eulerian mean velocities coincide 
and are given by 

wheref(9) satisfies 
w L  = ,!F[201 = a o w !  (77)t 

(i)f” =N2( f f” - f12 -K)  (5.9) 
or 

(ii) ff” - f ’ 2  = K ,  (5.10) 
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subject in each case to 
f(+ 1 )  = 0, f’( & 1 )  = 8, (5.11) 

where K is a constant. (We see that the steady flow to this order is not modified in the 
core by interaction with the oscillatory flow. I n  general this point does not appear to 
be trivial. See, for example, Stuart 1966.) 

The problem (5.9) and (5.11) was solved numerically; figure 4 shows the results for 
several values of R,. Equation (5.10) arises also from a problem studied by Proudman 
(1960). Proudman investigated the conditions under which a solution of (5.10) can be 
the limit as N - t c o  of solutions of (5.9).  He showed that, apart from the linear solution 
which satisfies (5.10) and (5.9) exactly, any solution of (5.10) with a zero a t  which 
f‘ < 0 must be the limit of a sequence of solutions of (5.9) in which there is a rapid 
transition in a third or higher derivative a t  the zero. A solution with a zero a t  which 
f’ > 0 cannot be the limit of a sequence of solutions of (5.9). 

I n  this case, we use Proudman’s result to  remove the ambiguity in the solution of 
(5.10) and (5.11), which have a family of solutions 

3( - l ) n  
f n (7 )  = -x sinnny, n = 1 , 2 , 3 ,  ... . (5.12) 

Of these we see that only fi has no zeros in the interior with f’ > 0, so we conclude that 
the appropriate solution is 

f (7) = - pn-’ sin ny. (5.13) 

The changes in the core steady streaming with R, are shown in figure 4. Notice that 
the flow in the limit R,+ 0 coincides with the limit as a-tco of the core flow at  small 
R, shown in figure 2 .  I n  the limit R,+co, the solution of (5 .9)  should approach (5.13). 
This trend may be seen in figure 4; however, to obtain close agreement a very large 
value of N 2  = R, would be required, which would make (5.9) awkward for computation. 

Previous studies of the steady streaming driven by a Stokes-type boundary layer 
a t  large R, have mainly concerned exterior flows. Riley (1  967) reviewed earlier work 
on the subject and showed how the problem of calculating the steady flow driven by 
an oscillating body may be formulated in terms of matched asymptotic expansions 
under several different conditions on the parameters 6 ,  a and R,. The particular case 
of a cylinder oscillating along a diameter in an unbounded fluid a t  large R, has been 
considered by Riley (1965) and by Stuart (1966). They showed that, near the points 
on the surface of the cylinder a t  the & +rr positions with respect to the direction of 
oscillation, the oscillatory boundary layer drives a steady flow which is directed away 
from these points, and that this produces a second boundary layer of thickness of 
order a, R;t, where a, is a characteristic length. 

I n  the present case, however, the oscillatory boundary layer drives a steady flow 
which is directed inwards, towards the point x = 0 (neglecting the independent 
component u, of the velocity). This fact is implied by (5 .8) .  Physically, we should not 
expect the vorticity generated by the oscillatory layer to be confined to a second 
boundary layer when advection is leading to a concentration of vorticity, and indeed 
it can be shown that there can be no steady boundary-layer-type flow driven by such 
a steady velocity a t  the edge of the oscillatory layer. I n  Stuart’s (1966) problem a 
similar situation arises near the points where the surface of the cylinder meets the 
diameter in the direction of oscillation. He suggested a jet-like solution in which 
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vorticity is continually carried away from the cylinder. On the other hand, Longuet- 
Higgins (1 953) suggested that the steady streaming a t  large values of R, can in some 
cases be calculated by the theory of inviscid rotational flow. Here we have given an 
example which suggests that when the steady velocity a t  the edge of the oscillatory 
layer is directed ‘inwards’ in a con$ned flow, an inviscid rotational streaming takes 
place throughout the flow domain. 

6. Elastically constrained walls 
I n  this section we consider a channel of finite length located on the interval 

A < x < B ,  

where L = B - A  $ a,. I ts  ends are supposed to be joined tjo reservoirs of fluid a t  
pressures pQA(t) and p$&) respectively, while the pressure outside the walls is pQE(t) .  
We assume as before that the walls remain parallel, occupying the positions y = a(t) .  
AS we intend this model to represent a portion of an artery, we introduce an elastic 
constraint on the motion of the walls of the form 

P T M A  = ~ f ( a )  with f (ao )  = 0, (6.1) 

where P T M ,  is the pressure difference across the wall averaged along the channel. In  
imposing this relation we are implicitly neglecting the wall mass and internal wall 
friction. 

Before applying the results of the previous sections to this problem, we need to 
consider what modifications they require when the channel has finite length. Let us 
suppose, for example, that the x-independent flow component u, has a steady part 
of order u$) and an oscillating part with magnitude of order udu) and frequency w .  To 
leading order the corresponding quantities for the x-dependent component u1 are 
up) = c2wL and up)= SOL a t  the ends of the channel. We shall estimate the ‘entry 
length’ 1 for each of these four components on the assumption that they may be 
treated independently. For the two oscillating components, we use the maximum 
displacement of a fluid element during one cycle as our estimate, obtaining 

I$”’ = 2w-luJu) and liu) = 2eL. 

For the two steady components, the entry length is of the order ka, R,  where R is the 
Reynolds number and k a small constant ( k  cz 0.06 for Poiseuille flow developing 
from a blunt profile in a tube). Thus 18) = k,,a2w-1u$) and I f )  = k,  R,L, where k, an 
k,  are unknown constants. For a given u,, we see that if L is sufficiently large l$’, 
Id“’< L. Since e< 1,  lp)  < L. However, we see that if R, is large lf) may be of order L 
or greater, and so ‘end’ effects modifying the steady streaming may in fact persist 
throughout the whole length of the channel. I n  this section we are primarily concerned 
with the oscillating components of the pressure field, so this effect may not be im- 
portant. If R, is order unity or smaller, then l p )  < L. 

We shall assume that end effects will have a negligible effect on any average taken 
over the length of the channel. We also neglect t,ransverse pressure variation. From 
(6.1) we obtain 
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and the end conditions are that 

$A = $0 

and similarly at x = B. We deduce that 

where #F = $(#A + # B )  - $E. (6.3) 

First we consider the inviscid problem. We have seen in $94 and 5 that the flow 
in the limit of small viscosity is not the inviscid flow: in particular, the inviscid flow 
contains no steady streaming. However we find that in the large R, problem the 
quantity &, representing the deviation from the inviscid pressure, vanishes to at 
least second order in the amplitude parameter 6, so the inviscid form of #2 may be 
expected to be a good approximation a t  large R,, even for non-sinusoidal wall motion. 
I n  the inviscid case, (6.2) gives 

a / a  - 2a2/a2 + 12f (a)/L2 = 12q5F/L2. 

s- 12sf (ao/s)/L2 = - 12#F8/L2. 

(6.4) 

With the substitution s = ao/a,  this becomes 

( 6 . 5 )  

Let us now assume a linear approximation to f (a )  and a sinusoidal pressure disturbance 

f ( a )  = k(a  - ao), $F = A cos wt.  

If we set ~2 = 12kao/L2 and ,u = 12A,/L2 we obtain 

i + ( K 2  +,U COS Ut)  S = K 2 .  

d2Uld22 + ( p  - 2q cos 2%) u = 0. 

(6.6) 

Equation (6.6) is a slight variation of the well-known Mathieu equation 

(6.7) 

The behaviour of the solutions of (6.7) is governed by the parameters p and q (see 
Abramowitz & Stegun 1965, p. 724). A set of characteristic curves, on each of which 
(6.7) has periodic solutions of period 277, divides the p ,  q plane into regions of two 
types: regions (containing the p axis) where (6.7) has two independent bounded 
solutions and regions where (6.7) has an unbounded solution. 

To complete the solution of (6.6) we have to find a particular solution. Putting 
z = Qwt, p = 4 ~ ~ / w *  and q = -2 .1~~ we have 

d'sldz2 + ( p  - 2q cos 22) s = p .  (6.8) 

A particular solution may be obtained by expanding p and s in powers of q about a 
known periodic solution for q = 0. For instance if we assume 

s = 1 +c cos 22 +O(q), p = 4 +O(q), 

s = 1 +ccos22 +($-A cos42)q+  ..., 

where s is periodic, we obtain 

(6.9) 

p = 4 +2C-lq +" 1 2 P  2 - UC-lq3 7 2  - &(g+ - fgC-1) 44  +. . . . (6.10) 

Omitting for a moment the terms of (6.10) containing the factor C-l ,  we are left with 
the formula for one of the characteristic curves. Hence if the point ( p ,  q )  lies close to 
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this curve, a periodic particular solution will exist with large amplitude C. Such a 
resonance occurs whenever p = 4n2 +O(q), i.e. whenever K z nw. Note however that 
an unbounded solution may be superimposed on this particular solution if ( p ,  q) lies 
in an unstable region. In  practice there must be some viscous damping present which 
will limit the amplitude of the motion. An order-of-magnitude calculation based on 
energy dissipation in the boundary layer suggests that the amplitude of the motion 
has an upper bound a, given by 

a,/a, - (kA, /w2L2)a  as a-fco,  (6.11) 

where k is a constant. This estimate is independent of the steady-streaming Reynolds 
number. 

We can be more precise about the effect of viscosity if we assume small wall motion 
and small R,, so that the analysis of 0 4 is relevant. If we assume that exp ( - a / 2 4 )  < 1 
and that 

a( t )  = a,{l +€al coswt +@[Re (a2e2i0t) +constant] +O(s3)),  
we find that 

and 

Assume now that $, = cos wt and that (6 .2)  holds. Using a Taylor-seriesexpansion 
forf(a), we obtain 

(where ~2 = 12a,f'(a0)/L2) 
12&1'/L2 

K2-w2/(1- 1//3) 
a1 = 

and 
a2 = -a: 3agf"(ao)/L2 +($ +O(a-2)) w2 

K' - 4w2/ [1  - 1/(2&/3)] 

(6 .12)  

(6 .13)  

Suppose that &ll is kept fixed but w is varied. Then we see from (6 .12)  that a resonance 
peak in lal/ will occur near w = K. In  fact, to a good approximation the maximum 
value of lull occurs when the denominator is pure imaginary, and is given by 

/all = 12 x 2&al&'llW-2L-2(1 +O(a-l)). 

This is consistent with (6.1 1). Equation (6 .13 )  shows that another resonance will occur 
at w E +K, even if the function f ( a )  is linear. The further resonances found in the 
inviscid case could be demonstrated by carrying the calculation to higher orders, 

7. Application to coronary flow 
The coronary arteries differ from other arteries in that they run for much of their 

length within the muscular wall of the heart and thus are subjected to a varying 
external pressure. This pressure is greatest during the ejection phase of the cardiac 
cycle (systole), and it is observed that the coronary flow has a minimum during 
systole, suggesting that the external pressure is sufficient to reduce significantly the 
vessel cross-section. If this constriction is assumed to be uniform along the length of 
the vessel, a situation similar to our model problem results. The axisymmetric case is 
perhaps the more appropriate. 
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Another particular feature of coronary blood flow, especially in large animals such 
as horses and large dogs, is the presence of fluctuations in the flow velocities, with 
frequencies of from 5 to 10 Hz. These have been found by several authors in open-chest 
measurements on anaesthetized animals (Rumberger & Nerem 1977; Nerem et al. 
1976; Wells et al. 1974). Tentative explanations have been put forward, such as wave 
reflexion or the presence of elastic waves in the heart wall. Rumberger & Nerem were 
able to reproduce the effect in a computer simulation of a coronary artery without, 
however, deducing any basic mechanism for the oscillations. 

I n  this section we show that the model problem we have studied allows for oscilla- 
tions in the same frequency range, and can therefore give some insight into a possible 
mechanism for the in vivo oscillations. We saw in $ 6  that in our model, as long as 
viscosity is not too large, the wall has a natural frequency of oscillation given (in the 
axisymmetric case) by (A 17) (see appendix). To obtain an estimate for the elastic 
constant a,f’(a,) we use Ruinberger & Nerem’s (1977) measurements of the wave 
propagation velocity c in the left anterior descending coronary artery of the horse. 
They found that the velocity is strongly dependent on the intraluminal pressure and 
on the distance along the artery. A typical value is of the order of c,, = 8m/s. The 
vessel length, following a major branch, is about 50 cm. By standard theory, c = (pD)-4, 
where the distensibility D is given by 

D = A-ldA/dp  = z(paf’(a))-l 

and A = n-a2 is the cross-sectional area. To the present approximation, 

ci = (pD)-l = +a,f’(a,), 

and from (A 17), K = 2 x 3Bc,/L. This gives a frequency ~ / ( 2 n )  = 9 Hz, which is similar 
to the observed frequencies. Here we have modelled the artery as a tube open a t  both 
ends. It would perhaps be more appropriate to suppose that the tube is open a t  the 
proximal end but closed a t  the distal end to the fluctuating component of the flow. 
This is equivalent in our model to a tube open at  both ends of twice the length, i.e. 
1 m. I n  this case we should predict a natural frequency of about 5 Hz, which is again 
of the same order as the observed frequencies. 

Two questions which immediately arise are: how are such oscillations excited and 
how strongly are they damped 1 Influences exciting the oscillations might include the 
higher-order Fourier components associated with the sharp rise and fa11 of the ventri- 
cular pressure wave form, and the effect of the nonlinearities explored in $ 6 .  The rate of 
decay in the absence of forcing may be estimated from (6.11) by supposing that a, $: 0 
but &Y1 = 0 and allowing w to be complex. Then 

u2 = (1 - i / P ) ~ 2 ,  Imw = ~/(2Ba). 

Thus unforced oscillations with frequency Rew z K are decreased by a factor 
exp [ - 77/(24a)] in each cycle. The value of a for a frequency of 5 Hz, vessel radius 
of 0.6 cm and kinematic viscosity of 0.0346 cm2/s is a = 18 so exp [ - n/(24a)] = 0.88, 
and oscillations of this frequency could persist throughout the cardiac cycle, assuming 
a cardiac frequency of about 1 Hz. Persistence for at least half a cycle has frequently 
been observed in horses. 

To conclude, we consider what features our model shares with the real coronary 
artery. I n  reality, any disturbance in a blood vessel must propagate as a wave, and 
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only if its wavelength is much greater than the length of the vessel will the wall 
motion be independent of axial distance. For a wave with the cardiac frequency, say 
1 Hz in the horse, this will be reasonable as then the wavelengt,h, using our estimate 
for the wave speed of c = 8 m/s, is about 8 m, compared with a vessel length of 0.5 m. 
For a fluctuation with frequency 5 Hz the wavelength is about 1.6  m so our assumption 
is not a good approximation. However one can envisage a situation in which all points 
on the wall move with the same phase, as in our model, although not all with the 
same amplitude. This may occur if a standing wave is set up in the vessel, or approxi- 
mately, if the wave contains a strong reflected component. 

Suppose then that our model approximates qualitatively some features of the real 
flow. We have seen that it predicts the possibility of flow fluctuation with frequency 
and damping rates consistent with experimental observations. From our model we 
are also able to  predict the nature of the steady-streaming component of the flow. 
This is likely to be important in determining mass transport in the vessel. It should 
be noted that, as there is no second-order steady interaction between different 
frequencies, the steady flows driven by different Fourier components of the pressure 
fluctuations may be superimposed a t  second order. At the cardiac frequency (1  Hz), 
a 8 and the steady streaming is small in the centre of the vessel but everywhere 
directed towards the wall. At frequencies of about 5-10Hz, a 20, so the flow is 
directed inwards in the core but towards the wall in a fairly thin boundary layer. To 
obtain a sample value of c, we use figure 1 (b)  of Rumberger & Nerem (1977). This 
shows fluctuations of amplitude 4 cm3/s peak to peak in the flow rate, with frequency 
about 7 Hz. The value of e estimated from the volume fluctuations divided by total 
vessel volume is then of order c = 10-2, so that the low R, regime applies. 

I am grateful to  Dr T. J. Pedley for suggesting the problem and for much valuable 
advice. I acknowledge the receipt of an Overseas Scholarship from the Royal Com- 
mission for the Exhibition of 1851. 

Appendix. The problem in axisymmetric geometry 
In the axisymmetric case, the equations of motion (2.2)-(2.6) become 

at +UU, feu, = - $z +Y(u,, +r-l(ru,),), 

V t  +UV, +VV, = - $, +u('u,, +r-l(rv,), - r-Ev), 

u, +r-l(rv), = 0, 

u=O, v = a  a t  r = a .  

The solution to  (A 1)-(A 4)  in the inviscid case is found to be 

v = ar/a, 

$ = $,(t) - @r2/a - G(t) 2 + (u/a - 3u2/a2) x2, 
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FIGURE 5 .  The Lagrangian mean streaming velocity 
in axisymmetric geometry [equation (A S)]. 

where q4c, G and P are again unknown functions. Putting 7 = r /a ,  we obtain equations 
corresponding to (2 .12 ) ,  (2 .14 )  and (2 .17 ) :  

Ult +u2, +(v - 67) a-1Ul1) = - 2q42 +Va-2?/-1(~u11))a;  

u1 +a-ly-l(?p), = 0; 

(A 5 )  

(A 6)  

ul=O,  v = u  a t  7 = 1 .  (A 7 )  

We omit the small a solution, which differs from (3.2)-(3.4) only in the values of 
numerical constants. The solution a t  small B, corresponding to (4.3)-(4.5) is found 
to be 

q4y1 = - wZI0(P) /D ,  

- 2iw(Io(P) - Io(P7)) /Q 4111 = 

VIllI = iao w(rIo(P)  - 2 U P r ) / P ) / D ,  

where P = oletin, D = I,@) - 211(p)/P and I, and Il are modified Bessel functions. At 
second order, we find for the steady components 

where 
VL = oaof(7,, U1L = -w7-l(7f)’, 

1 
f ( l i )  = (($ l0(p)  I,CP*) +c.c. - +I~(P) 1 ~ ( ~ * ) ) ( 2 7 -  7 3 )  

- ili [I,(P7) I1(P*7) + 2 4 ( P ) 4 ( P * )  - (P*s”  -1 Il(P7) W * r )  +....)I 

- (p4tPrt (31,(P*) +Io(P*r)) +c.c.)). (A 8 )  
1 

The functionfis plotted in figure 5 for several values of a. 
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for large a, from (A 11) (R, finite) and (A 14) (R, -+ 00). 

FIGURE 6. The steady streaming velocity in the core in axisymmetric geometry 
J 

FIGURE 6. The steady streaming velocity in the core in axisymmetric geometry 
for large a, from (A 11) (R, finite) and (A 14) (R, -+ 00). 

We now consider the problem a t  large CL. and at  moderate and large values of R,. 
From (A 5) and (A 6) ,  

a-lT/+(?pt)v - uu-zT-l(p)v - a-27-y (ru),)2 +a-2(v - U?/) (?p(?p)J7 

= w 2  + v a - 3 ~ - 1 ( ~ ( 7 - 1 ( ~ u ) v ) v ) , .  

Setting v = a? +u5F(7, t )  we obtain 

F,, +T-'Ft +a4(FFvv - F: - T-IFF, - 27-2F2) 

= 2a-46, +va-2(Fv,, +27,-1Fvv - v-2Fv +r,r3F), (A 9) 
- 

where 

Applying the method of matched asymptotic expansions to cases (i) and (ii), as in 
0 5, and setting 

#2 = # z  - s / a  + 3u2/a2. 

vL = .:Po' = a,of(?,I) 

and f(7) = 7-4g(7 ) ,  where 7 = r2, (A 10) 

we obtain 

(i) 

(ii) gg" - g I 2  = &K, 

gg" -gr2  = 4K +2N-2(7g" +g"), 

with in both cases g ( 7 )  = o ( d )  as T + O ,  g(1) = 0, g'(1) = 4. 
In case (ii) we find that solutions are given by 

3 
2n7r 

g =  (-1)"---sinnn~, 
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i.e. 

The same argument as was used in Q 5 shows that 

I n  case (i), numerical methods are required. Equation (A 1 1 )  is singular at the origin 
SO a power-series solution was used on the interval [ O ,  0.11 and the unknown parameters 
obtained by matching with a numerical solution for the interval [O-1 ,  I]. Figure 6 
shows the functionf(7) a t  several different values of R,, along with the solution (A 14) 
of case (ii). 

The problem of an elastically constrained wall in axisymmetric geometry follows 
the same lines as the two-dimensional problem. I n  the inviscid case, 

so 
$2 = a/a - 3d2/a2, 

a /a  - 3ci2/a2 +6f (a)/L2 = 6&/L2. 

An equation similar to (6.5) results from setting s = ai/a2, and if one takes 

f ( a )  = k(a2-a;)) 

(6.6) is again obtained. For small oscillations about a = a, the natural frequency K is 
given by 

K~ = 6a,,f’(a,)/L2. (A 17) 
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